

neoss® NeoGenix XP™

Safe and clinically proven natural bone substitute

NeoGenix XP™

NeoGenix XP^{TM} is an osteoconductive, porous, anorganic bone mineral with a carbonate apatite structure derived from porcine cancellous bone.

Product Features

- Carbonate apatite structure similar to natural bone mineral
- Highly porous more space available for new bone deposition
- Rough surface facilitates cell adhesion and spread for bone ingrowth
- ✓ Osteoconductive
- Available in jar or delivery syringe

Why NeoGenix XP™?

Safe

- Porcine animals are considered a non-TSE relevant species
- Bone tissue is subjected to several processing steps known to eliminate or inactivate viruses
- A rigorous process designed to effectively mitigate any risk of disease transmission and ensure safety for human implantation
- The bone graft is provided sterile and for single use only

Carbonate apatite anorganic bone mineral

- Carbonate apatite structures are better osteoconductive materials than hydroxyapatite 1,2,3
- Resorption and remodeling profiles are more similar to natural bone than those of synthetic materials, such as hydroxyapatite or tricalcium phosphate²

Porous

- Porosity permits vascularization of the defect site and enhances osteogenesis 4,5
- High porosity and large pores enhance bone ingrowth and osseointegration of the implant after surgery
- NeoGenix XPTM macropores range between 0.1 mm 1.0 mm 6

Surface Roughness

Surface roughness affects cellular response, enhancing cell adhesion and proliferation and possibly other markers of expression of cell phenotype, like production of collagen type I, osteocalcin, extracellular matrix and mineralized material.

Assortment

ARTICLE NO.	DESCRIPTION
64091	NeoGenix XP™ 0.5cc (0.25-1 mm particle size) Jar
64092	NeoGenix XP™ 1.0cc (0.25-1 mm particle size) Jar
64093	NeoGenix XP™ 2.0cc (0.25-1 mm particle size) Jar
64094	NeoGenix XP™ 4.0cc (0.25-1 mm particle size) Jar
64095	NeoGenix XP™ 1.0cc (1-2 mm particle size) Jar
64096	NeoGenix XP™ 2.0cc (1-2 mm particle size) Jar
64097	NeoGenix XP [™] 0.25cc (0.25-1 mm particle size) Curved Syringe
64098	NeoGenix XP™ 0.5cc (0.25-1 mm particle size) Curved Syringe

Indications

Ridge and sinus augmentation	~
Extraction socket grafting	~
Infrabony periodontal defects	~
Periodontal defects	~
Peri-implant defects	~
Dehiscence defects	~

Contact your local representative for product availability details. All products are not available on every market.

References

- 1. Spense G., Patel N., Brooks R., Rushton N. 2010. Osteoclastogenesis on hydroxyapatite ceramics: The effect of carbonate substitution. J Biomed Mater Res A. 2010 Mar 15;92(4):1292-300.
- 2. Ellies LG, Carter JM, Natiella JR, Featherstone JDB, Nelson DGA. 1988. Quantitative Analysis of Early In Vivo Tissue Response to Synthetic Apatite Implants. J Biomed Mater Res 22:137–148.
- 3. Landi E., Celotti G., Logroscino G., Tampieri A. 2003. Carbonated Hydroxyapatite as Bone Substitute. Journal of the European Ceramic Society 23: 2931–2937.
- 4. Frank M. Klenke, Yuelian Liu, Huipin Yuan, Ernst B. Hunziker, Klaus A. Siebenrock, Willy Hofstetter. Impact of Pore Size on the Vascularization and Osseointegration of Ceramic Bone Substitutes in vivo. Journal of Biomedical Materials Research Part A, 2007, 777-786
- 5. Hannink G1, Arts JJ. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury. 2011 Sep;42 Suppl 2:S22-5.
- 6. Data on file

AUSTRALIA & NEW ZEALAND Neoss Australia Pty Ltd

Ground Floor North Tower, John Oxley Centre 339 Coronation Drive, Milton Queensland 4064 Australia T: +61 7 3216 0165

E: info.au@neoss.com

Order your products 24/7 in our Online Store

Australia shop-au.neoss.com

10622_26 AUS_NZ © Neoss Group, 2025-09. Copyrights, desgn rights and trademarks, Neoss documents, software and designs may not be reprinted, copied or published in whole or part, without the written authorisation of Neoss Group. Product images are not necessarily to scale.